
QUIZ Solution - CALCULUS 1

Q1 :

1. Simplify following expressions.

(a)
(4x)

2
3 (1

2
y−2)−

1
3

3
√
xy4

.

(b) sin−1
(

sin

(
2

3
π

))
.

(c) tan

(
cos−1

(
1

4

))
.

sol:

(a)
(4x)

2
3 (1

2
y−2)−

1
3

3
√
xy4

=
2

4
3 · x 2

3 · 2 1
3y

2
3

x
1
3 · y 4

3

= 2
5
3x

1
3y−

2
3

(b) sin−1
(

sin

(
2

3
π

))
= sin−1

(√
3

2

)
=
π

3

(c) Solution 1.

Let θ = cos−1
(

1

4

)
i.e. cos θ =

1

4
and θ ∈ [0, π].

∵ cos θ > 0 ∴ θ ∈ [0,
π

2
)

Draw a right triangle with an angle θ.

C A

B

4 √
15

1
θ

Hence tan θ =

√
15

1
=
√

15.

Solution 2.

Let θ = cos−1
(

1

4

)
i.e. cos θ =

1

4
and θ ∈ [0, π].

Hence sin2 θ = 1− cos2 θ = 1− 1

16
, sin θ = ±

√
15

4
∵ θ ∈ [0, π] ∴ sin θ ≥ 0

Thus tan θ =
sin θ

cos θ
=
√

15
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Solution 3.

Let θ = cos−1
(

1

4

)
i.e. cos θ =

1

4
and θ ∈ [0, π].

∵ cos θ =
1

4
> 0 ∴ θ ∈ [0,

π

2
).

sec θ =
1

cos θ
= 4. tan2 θ = sec2 θ − 1 = 15

⇒ tan θ = ±
√

15

∵ θ ∈ [0,
π

2
) ∴ tan θ > 0

Hence tan θ =
√

15

2. Consider the function f(x) = log4(2x− 6).

(a) Use the laws of logarithms and change of base formula to express f(x) as a+ b ln(x+ c).
Find constants a, b, and c.

(b) (continued) Sketch the graphs of lnx, ln(x+ c), b ln(x+ c), and f(x) = a+ b ln(x+ c).

sol:

(a) f(x) = log4(2x− 6) = log4 2 + log4(x− 3) =
1

2
+

ln(x− 3)

ln 4
= a+ b ln(x+ c)

This means that a =
1

2
, b =

1

ln 4
=

1

2 ln 2
, c = −3

(b)

x

y

1

y = lnx

(i)

x

y y = ln(x− 3)

3 4

(ii) y = lnx 3
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x

y
y =

1

2 ln 2
ln(x− 3)

3 4

(iii) y = ln(x− 3) 2 ln 2

x

y
y =

1

2
+

1

2 ln 2
ln(x− 3)

3 4

(iv) y =
1

2 ln 2
ln(x− 3)

1

2

Q2 :

1. Evaluate the limits. If the limit does not exist, determine whether the limit is ∞,−∞,
or neither. (You CANNOT use any method that uses the derivatives)

(a) lim
x→0

(x− 3)2 − 9

x2 + 2x
.

Solution:
Factor both the numerator and the denominator.

(x− 3)2 − 9

x2 + 2x
=
x2 − 6x+ 9− 9

x2 + 2x
=
x(x− 6)

x(x+ 2)
.

When x 6= 0,
(x− 3)2 − 9

x2 + 2x
=
x− 6

x+ 2
.

Therefore

lim
x→0

(x− 3)2 − 9

x2 + 2x
= lim

x→0

x− 6

x+ 2
= −3

(b) lim
x→−4−

ex

x+ 4
.

Solution:
Because lim

x→−4−
ex = e−4 and lim

x→−4−
x+ 4 = 0, the limit does not exist.

The limit of the numerator is a positive number and the limit of the denominator is 0−.
The infinite limit

lim
x→−4−

ex

x+ 4
= −∞
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(c) lim
x→0+

(sinx)

(
sin

1

x

)
.

Solution:

Because lim
x→0+

sinx = 0 and lim
x→0+

sin

(
1

x

)
does not exist, we need to use other methods

to find the limit.

When x > 0, we can use the inequalities

−1 ≤ sin

(
1

x

)
≤ 1,

−| sinx| ≤ (sinx)

(
sin

1

x

)
≤ | sinx|.

Since lim
x→0+

−| sinx| = 0 and lim
x→0+

| sinx| = 0, we can use the Squeeze Theorem. There-

fore

lim
x→0+

(sinx)

(
sin

1

x

)
= 0

(d) lim
x→∞

√
3x+ 4x2 − 2x.

Solution:
This one is straightforward.

lim
x→∞

√
3x+ 4x2 − 2x

= lim
x→∞

3x+ 4x2 − (2x)2√
3x+ 4x2 + 2x

= lim
x→∞

3x√
3x+ 4x2 + 2x

= lim
x→∞

3√
3
x

+ 4 + 2
=

3

4

(e) lim
x→2

g(x), where g(x) =


x2 − 4

x− 2
, x < 2,

3, x = 2,

xex−2, x > 2.
Solution:
Check one-sided limits for piecewise functions.

lim
x→2−

x2 − 4

x− 2
= 4

and
lim
x→2+

xex−2 = 2.

Therefore the limit does not exist.
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2. Find the domain of the function f(x) =
x√

x2 − 3x+ 2
. Then find the horizontal and

vertical asymptotes of the curve y = f(x).
Solution:

The domain is determined by
√
x2 − 3x+ 2 6= 0 and x2 − 3x + 2 ≥ 0. Solving them

will give us x 6= 1, 2 and either x < 1 or x > 2. In interval notation the domain is
(−∞, 1) ∪ (2,∞).

The function is continuous on its domain. To find horizontal and vertical asymptotes
we need to evaluate four limits:

lim
x→−∞

f(x), lim
x→1−

f(x), lim
x→2+

f(x), lim
x→∞

f(x).

We find

lim
x→−∞

f(x) = −1, lim
x→1−

f(x) =∞, lim
x→2+

f(x) =∞, lim
x→∞

f(x) = 1,

so the asymptotes of y = f(x) are y = −1, y = 1, x = 1, and x = 2.

Q3 :

1. Compute f ′(x) where

f(x) =
sinx+ x3 − 2x+ 5

2x2 + 31
− ex(x+ 3) cosx.

Solution:

f ′(x) =
(cosx+ 3x2 − 2)(2x2 + 31)− (sinx+ x3 − 2x+ 5)4x

(2x2 + 31)2

− (ex(x+ 3) cosx+ ex(cosx− (x+ 3) sinx))

=
(2x2 + 31) cosx− 4x sinx+ 2x4 + 97x2 − 62

(2x2 + 31)2
− ex ((x+ 4) cosx− (x+ 3) sinx) .

.

2. This is an alternate way to compute (lnx)′.

(a) Sketch the graph of y = ex and y = lnx on the same picture. Draw the tangent line of
y = ex at (0, 1) and the tangent line of y = lnx at (1, 0). What are the slopes of those
tangents?

(b) Use the result of (a) to show that lim
r→1

ln r

r − 1
= 1.

(c) Use the result of (b) to compute (
d

dx
lnx)|x=a = lim

x→a

lnx− ln a

x− a
. (Hint: Use the Laws

of Logarithms and the fact that
x

a
→ 1 as x→ a.)

Solution:
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(a)

x

y

y = x

y = ex

(0, 1)

(1, 0)

y = lnx

The slope of the tangent line of y = ex at (0, 1) is 1 , since the graph of y = ln x is a
reflection of the graph of y = ex with respect to y = x, the slope of the tangent line of
y = lnx at (1, 0) is also 1.

(b)

lim
r→1

ln r

r − 1
= lim

r→1

ln r − ln 1

r − 1
= (lnx)′(1)

is the slope of the tangent of the graph y = lnx at (1, 0). Hence lim
r→1

ln r

r − 1
= 1.

(c) (
d

dx
lnx

) ∣∣∣
x=a

= lim
x→a

lnx− ln a

x− a

= lim
x→a

ln(x
a
)

a(x
a
− 1)

let r=x
a=======

1

a
lim
r→1

ln r

r − 1

=
1

a

Q4 :

1. Let f(x) = ln | tan−1 x|, x 6= 0. Find the equation of the tangent line to the graph of f
at x = −1.

Solution:

Recall that (ln |x|)′ = 1

x
for 0 6= x ∈ R. Therefore, by the chain rule, we have

f ′(−1) =
1

tan−1 x
· 1

1 + x2

∣∣∣
x=−1

= − 4

π
· 1

2
= − 2

π
.

So the equation is

y − f(−1) = y − ln(
π

4
) = − 2

π
(x+ 1).
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2. Let the curve in the plane be described by the equation

cos(xy)−
√

2

π
x = 0. (1)

Find the slope of the tangent line to this curve at (π/2, 1/2) by

(a) first solving the function y = f(x) from (1) (you need to specify the domain of f) and
then taking derivative;

Solution:
We can solve for y to obtain

y(x) =
1

x
cos−1(

√
2

π
x), |x| ≤ π√

2
, x 6= 0.

Note that cos−1(

√
2

π

π

2
) =

π

4
and

(cos−1(

√
2

π
x))′|x=π/2 = − 1√

1− 1/2
·
√

2

π
= − 2

π
.

So the slope is

f ′(
π

2
) =

x(cos−1(
√
2
π
x))′ − cos−1(

√
2
π
x)

x2

∣∣∣
x=π/2

=
−4− π
π2

.

(b) implicit differentiation.

Solution:
By the implicit differentiation, we obtain

− sin(xy)[y + xy′]−
√

2

π
= 0.

So we can evaluate y′ at x = π/2 from

− sin(
π

2
· 1

2
)[

1

2
+
π

2
y′] =

√
2

π

and obtain

y′(
π

2
) =
−4− π
π2

.

3. Let f(x) = xx for x > 0. Use the linear approximation to approximate the value of
f(1.01).

Solution:
We first find f ′(x), that is,

f ′(x) = (xx)′ = (elnx
x

)′ = (ex lnx)′ = ex lnx[lnx+ x · 1

x
] = xx(lnx+ 1)

and so f ′(1) = 1. Thus, the linear approximation is

f ′(1.01) ≈ f(1) + f ′(1)(0.01) = 1.01.
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Q5 :

1. True or False Questions. Write ”T” before correct statements. Write ”F” before incor-
rect statements.

• If f(c) is a local extreme value, then f ′(c) = 0.

• If c is a critical number of f(x), then f(c) must be a local extreme value.

• If f(x) is differentiable and increasing on an interval I, then f ′(x) > 0 for all
x ∈ I.

• If f ′′(c) = 0, then (c, f(c)) is an inflection point of y = f(x).

Solution: Statements in problem 1 are all False.

2. Consider the function f(x) = −2x2 + 5x− lnx.

• Compute f ′(x). Find intervals on which f is increasing or decreasing.
Solution:

f ′(x) = −4x+ 5− 1

x
.

f ′(x) =
−1

x
(4x− 1)(x− 1).

Hence f ′(x) < 0 for x ∈ (0,
1

4
) ∪ (1,∞) and f ′(x) > 0 for x ∈ (

1

4
, 1). Therefore f(x) is

increasing on (
1

4
, 1) and f(x) is decreasing on (0,

1

4
) ∪ (1,∞)

• Find and classify critical numbers of f(x).
Solution:

f(x) is differentiable and f ′(x) = 0 has two solutions x =
1

4
, 1. Hence f(x) has two

critical numbers x =
1

4
, 1. Since f ′(x) < 0 for x ∈ (0,

1

4
) and f ′(x) > 0 for x ∈ (

1

4
, 1),

f(
1

4
) is a local minimum.

Since f ′(x) > 0 for x ∈ (
1

4
, 1) and f ′(x) < 0 for x ∈ (1,∞), f(1) is a local maximum.

• Find absolute extreme values of f(x) on [
1

2
, e].

Solution:

In the interval [
1

2
, e], there is only one critical number x = 1. Hence the candidates for

absolute extreme values are f(1) = 3, f(
1

2
) = 2 + ln 2, and f(e) = −2e2 + 5e− 1.

Since f(1) > f(
1

2
) > f(e), the absolute maximum value is f(1), and the absolute

minimum value is f(e).
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• Compute f ′′(x). Find the intervals of concavity and inflection point(s).

Solution:

f ′′(x) = −4 +
1

x2
.

f ′′(x) > 0 for x ∈ (0,
1

2
). Hence y = f(x) is concave upward on (0,

1

2
). f ′′(x) < 0 for

x ∈ (
1

2
,∞). Hence y = f(x) is concave downward on (

1

2
,∞). And (

1

2
, f(

1

2
)) is the

inflection point.

3. Show that the equation 2x+ tan−1 x− 1 = 0 has exactly one real root.
Solution:
Let f(x) = 2x + tan−1 x − 1. f(x) is continuous and differentiable on R. Since
f(0) = −1 < 0 and f(1) = 1 + tan−1 1 > 0, there is a root for f(x) = 0 in the
interval (0, 1) by the intermediate value theorem.

If there is another root for f(x) = 0, then by Rolle’s theorem there is some point c
between two roots such that f ′(c) = 0.

However, f ′(c) = 2 +
1

1 + c2
> 2. We obtain a contradiction. Hence there is only one

root for f(x) = 0.
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